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Abstract— This paper ouflines the basic ideas of a new and very
efficient integral method for the electromagnetic modelling of boxed
matltilayered passive circuits. Differently from standard integral ap-
proaches, the method leads to a state-space representation of the com-
ponent, which directly permits us to find its admittance matrix, in the
form of a reduced-order pole expansion in the s-domain, through stan-
dard Krylov sub-space technique,

[. INTRODUCTION

A particular attention is presently devoted to the develop-
ment of efficient electromagnetic solvers that directly lead
to the mathematical model of passive components or sub-
systems, through the application of the so-called S-domain
methods [1]. The mathematical model is obtained in the
form of pole expansion of some circuit matrix (scattering,
impedance, admittance, ...) in the domain of the Laplace
variable s. Such models are- very useful for representing
passive components or subsystems in the design of compiex
integrated systems, carried out in a network-oriented simu-
lation environment.

The basic problem encountered in S-methods derives

from the necessity of representing a distributed structure,

inherently of infinite order, by a macromodel of finite and
reasonably small order. Among the many possible tech-
niques suitable for this purpose, the most robust and effec-
tive are based on the Krylov sub-space methods, such as
the matrix-Padé-via-Lanczos (MPVL) and the block Arnoldi
algorithms, largely used in the reduced-order modelling of
complex VLSI circuitry [2] [3].

Krylov sub-space methods apply to state-space models of
linear systems and, for this reason, they are well-matched
to the Finite Element Method, which gives rise to a model
of this type [1] [4] [5]. On the contrary, Integral Equation
Methods, which are the most effective in the analysis of pla-
nar components, do not give rise 10 equations in the state-
space form, so that Krylov sub-space methods can be ap-
plied only through adaptive procedures [6], which partially
reduce their efficiency.

In this paper we give an outline of a new S-domain
integral method for the modelling of shielded multilay-
ered passive MMIC components or subsystems. Differ-
ently from standard integral methods, the new procedure di-
rectly results into state-equations, thus permitting to exploit
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Fig. 1. Shielded multilayered microstrip circuit. The region ) includes the
metallizatien {shadowed area) and the delta-gaps (segments ¢1, 2, ...}

at best the advantages of the integral approach and of Krylov
sub-space methods. Some preliminary conference papers
were already published [9]-[11], which presented a similar
method, valid only in the case of components on low-loss
substrates. The algorithm presented here has been modified,
in order to consider also lossy substrates, and to reformulate
the problem in terms of real state-variables, thus atlowing
the use of standard model-order reduction techniques [2]. A
detailed description of the new method will be given in a
forthcoming journal paper.

I1. OUTLINE OF THE THEORY

Let us consider a shielded passive component consisting
of thin metal elements embedded in a layered medium, in-
cluding both insulating and semiconducting layers (Fig. 1).
For the sake of simplicity we assume that these elements are
located cutside the semiconducting layers, at a single “met-
allization level”, Furthermore, as usual, we assume a “delta-
gap voltage excitation” [7] [8]. The shadowed area £2 shown
in Fig. 1 represents the metallization, including the gaps
t1,t2,. .., tx where the exciting voltages vy, va, . . ., Uy are
applied. The excitation gives rise to a surface current J dis-
tributed in the metallization, and to a set of gap-currents

11,12, . . ., in. The positive direction of the gap-voltages and
currents is defined by the normals 73, fia, . .., % 5. We have:
in :f J - fipdts (1

ta

Over the surface {2 the tangential electric field must satisfy
the boundary condition:

N
CEdz,y) =) vnbafin + ZJ(z,y) Vzy € Q@

n=1
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Fig. 2. Equivalent circuit for the calculation of Z;. The line sections
correspond to the layers and z is the meta]lization level.

where J,, denotes a delta-function supported by the segment
« tn, and Z is the surface impedance of the metal elements.
Or the other hand the electric field is related to the currents
density by the integral

/] Z(z,y, 7'y - T,y )de'dy’ (3)

Z=) Za(enaE.y) @

where vectors &, are the normalized electric mode-vectors of
the modes of the rectangular waveguide of sides a, b and Z;
is the modal-impedance seen from the metallization level,
looking in the layered rectangular cavity. For each mode, Z;
is calculated by considering the transverse equivalent circuit
shown in Fig. 2, where each line-section corresponds to a
layer and the terminal short circuits correspond to the con-
ducting planes at z = 0 and z = hy. The propagation
factor (x{) and the characteristic impedance ((;”) depend
on the layer and on the mode. Their expressions in terms
of the Laplace variable s are given in Table I, whete o and
¢¢ are the conductivity and the relative permittivity of the
£-th layer, and k. is the cutoff wavenumber of the mode.

On substitution of (3} into (2) we obtain an integral equa-

tion, whose solution yields the current density generated by
a given set of voltages. Then, substituting into (1) we find
the relationship between the voltages and the currents, i.e,
the admittance matrix of the component.

The integral equation is selved by using the Method of
the Moments., We approximate the current density in a finite
dimensional functional space, using the expression

K
J= Z cr Wz, y) 5

k=1

where {0} is a set of real basis functions defined on €
and {cy } is a set of complex variables. Using the Galerkin’s
method the integral equation is transformed into the matrix
equation

Ze=Tv (6)

where v is the voltage vector, ¢ is the vector of the variables
g, and Z € CE*E T ¢ REXN are matrices with entries
given by

Zhi = Y whawkiZi + ZKnx M

1964

TABLE1

i-th mode ﬁc(:) C(f)
(£)
Jrpg
TMPQ —_ -
sepee + og
2 2
—(s2epe sa, —-k
TEpq \F( oee + 50 o — kZ SUQ/JR(U
s-plane Aim s
e "\ band of
c/ interest
” . L N
: meu° ( i
! 1
. -
> Re s
§ o ] Cu"m
‘\ 'jwmazn' /’
Y ,4/
Ny ) L
S P
q

Fig. 3. Typical pole pattern of Z; for a TM mode. The accuracy of the
approximation (10) increases with increasing the value of the “accuracy
factor” ¢. A value { = 2 + 3 is appropriate,

Th = f B - i b ®
in

where wp; = fﬂ ’Lﬁh . é}dﬂ and Kh.k = fﬂ 15)1 . lﬁkdﬂ. On
the other hand, from (1) and (5) we obtain

i=T'c (9)

To put (6) into the form of a state-equation we introduce
the pole expansion of the modal impedance [12]. We have
an infinity of complex pole-pairs (Fig. 3), corresponding
to damped oscitlating modes of the equivalent circuit of
Fig. 2. Furthermore, we possibly have a finite number of
real poles, corresponding to damped non-oscillating modes.
With the low conductivities of the semiconductors normally
used in MMICs, it is found that real poles are absent in TE-
mode impedance, whereas they are still present in TM-mode
impedance, in a number equal to the number of interfaces in-
volving one or two semiconductor layers, i.e., a number of
the order of unity.

Assuming that an accurate modeling is only required in
some given “band of interest” (0, wiag), We can approxi-
mate someway the contribution of all poles far from the cor-
responding portion of the imaginary axis (see Fig. 3). Then,
considering a circle C of radius {wmq,s, sufficiently larger
than wymqez, We can truncate the pole expansions by retain-
ing the poles located inside C' and approximating the con-
tribution of all other poles by a power expansion around the
origin, truncated to the first order. We have

B2
Zi =Ry + 8Ly + ‘ + —
: Z S+ Giv
+ an 2 o —-j‘(): )2
+ Z g (2 (10)
8 + Tip — Jwa.,u S+ Tyt szp.



where: —g;, and (;8,-,,)2 represent a real pole and its real
residue;, —r, + jwi, and (agu + jog, 2 tepresent a com-
plex pole-pair and their residues; the indexes u and v label
the poles in the order of increasing distances from the ori-
gin; X is a summation including only the poles located in
C; 8; is the (real, non-negative) residue of the pole at the ori-
gin (not existing for TE modes); R;, £, are real quantities
and R; + sL; approximates the contribution from all poles
outside C. All coefficients included in the expansion de-

pend only on the box and the metallization level, and can be -

determined once for all, and used for considering different
metallization patterns. An efficient code for their calculation
is described in [9].

The pole-set of the matrix Z consists of the complex and
real poles (¢ ) of all the impedances included in the sum-
mation (7). These potes are renamed by using a single-index
notation, thus constructing the sequences {ry,"s,...,7ap},
{wi,wa, ..., wpr} and {g1,g2,- .. 9} The same index-
ing is used for the residues.

It s important to note that, with increasing the mode or-
der 4, the complex poles of the impedance Z; move toward
infinity and go outside the circle C. Then, the number A’
of complex poles is finite (and reasonably small), whatever
large is the number of terms included in the summation (7).
The same statement does not hold true for real poles, be-
cause they move toward finite asymptotic values. If these
values are placed inside of the circle C (which is likely to
happen in the case of high resistivity semiconductor lay-
ers) the number M” increases with increasing the number
of terms included in the summation, and it can be very large.
Equation (6) can be put into the form

[R+ZK+sLlc+Sd+Bb+A’a' + A”a” = Tv (11)

where: R, K, L, S € RE*K sre symmetric matrices of evi-
dent definition; matrices A’, A” ¢ RE*M are defined as

/ ! i i
b — \/iwkjam hm — \/gwhjam

matrix B € RE*M" s defined as

{m 4, 1)

Bim = Wi (m—j,v)

and the vectors a’, a”’ € CM' b e ™", d e CK satisfy

(D' + sIyp)a’ + Da’” — A"e =0 (12)

(D' +slpp)a” —Da' + A c=0 (13)

(D" + sIp+)b—B'e =10 (14)

s88d —Sc=10 (15)

where D := diag(ws, ..., wnr), D’ := diag(ry, ..., rar),

D = diag(gy, ..., g ) and I, denotes the identity ma-
trix of order n. All matrices are independent of s.

For the sake of simplicity iet us suppose that also 7 is
independent of s and assume that it is purely resistive (e.g.,
Z can be chosen as the surface resistance of the metalliza-
tion at the frequency wiyqe/2). With this assumption, equa-
tions (11)-(15}), explicitly exhibit the dependence on the pa-
rameter g, in the typical form of state-equations, where the
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state variables are represented by the elements of the vectors
a’, 8" b, c,d. Introducing

DY 0 0 AT D

o D" 0 -B" 0

M:= 0 o 0 -8 0

~A’ B S -R -A"

D 0 0 —-A"T -D
IMJ 0 00 0 a’ 0
0 Iyv00 O b| _ |0
N:=|0 0 S0 0 x:=1d T:= |0
0O 0 0-L ¢ c T
0 0 00 ~Ly a' 0

the mathematical model of the component is put into the
standard stafe-space form

(16)

(M+sN)x = Tv
i an

T
i=Tx

The order of the modgl, i.e., the number of state variables,
is M = 2K +2M'" + M". It can be large, especially due
to the possible large values of M and K. Using a Krylov
sub-space algorithm the original model is replaced by the
reduced-order model

[m3 =3

v (18)

.S (19

(M + sN)x
i =

and the admittance matrix is obtained in the form of the pole
expansion

M T ~
ot = — T =T
Y =T M+sN)T= ) =Teins
Am + 8

m=1
where M (< M) is the order of the reduced-order made!
and X,,, ¥ are the eigenvalues and the eigenvectors ob-
tained from the solution of the generalized eigenvalue prob-
lem (M + AN)y = 0.

III. EXAMPLE

Fig. 4 and Fig. 5 show two examples of application of
the described algorithm. The resuits are reported in the
form of scattering parameters, that are determined straight-
forwardly from the pole expansion of the admittance matrix.
In both cases the basis functions were rectangular roof-tops.
In the figures the results of our method are compared with
the results obtained by a commercial code (EMSight™),
which determines the scattering parameters, frequency by
frequency, using the integral equation method in the spectral
domain. The reported omputing times refer to a standard PC
with a 1300 MHz AMD Athlon processor.

In the case of the directional coupler of Fig. 4 we used
K = 516 basis functions, finee = 60 GHz and { = 2.5. We
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Fig. 4. Branch-line directional coupler on a Si substrate (dimensions in
pm). Z = 0.05Q, e1 = 11.76, o1 = 1/30 S/m, Solid line: this
method; dots: EMSight results.

found only one complex pole-pair inside the circle C' (M’ =
1), whereas the number of real poles was A" = 3600. The
final order of the system was M = 42, The computing time
was about 40 s, whereas EMSight required about 70 s to
calculate the 31 frequency samples that are reported in the
figure. Taking into account the fact that our algorithm yields
the whole frequency response from 0 to f,,,.., the time sav-
ing can be considered very significant.

In the case of the coupled-line band-pass filter of Fig. 5
we used K = 241 basis functions, fimqe. = 70 GHz and
¢ = 2.5. The number of complex poles was M’ = 10 and
the number of real ones was M"” = 1500. The final or-
der of the system was A = 68. The computing time was
about 10 s, which, in this case, was about one order of mag-
nitude shorter than the time required by EMSight™. The
same structure was modelled with the procedure described
in [11]: the new procedure gave rise to a time saving of about
30% with respect to the old one,

It is finally worthy noting that the above computing times
include the evaluation of the coefficients of the pole expan-
sions (10), which affects the total CPU time by about 30%.
When performing repeated analysis of circuits on the same
stratification and included in the same shielding box, e.g.,
for optimization procedures, the evaluation of these coeffi-
cients must be performed only once, thus further increasing
the efficiency of the proposed method.
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