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I. INTRODUCTION 

A particular attention is presently devoted to the develop- 
ment of efficient electromagnetic solvers that directly lead 
to the mathematical model of passive components or sub- 
systems, through the application of the so-called S-domain 
methods [l]. The mathematical model is obtained in the 
form of pole expansion of some circuit matrix (scattering, 
impedance, admittance, . ..) in the domain of the Laplace 
variable s. Such models are very useful for representing 
passive components or subsystems in the design of complex 
integrated systems, carried out in a network-oriented simu- 
lation environment. 

The basic problem encountered in S-methods derives 
from the necessity of representing a distributed structure, 
inherently of infinite order, by a macromodel of finite and 
reasonably small order. Among the many possible tech- 
niques suitable for this purpose, the most robust and effec- 
tive are based on the Krylov sub-space methods, such as 
the matrix-Pads-via-lanczos (MPVL) and the block Amoldi 
algorithms, largely used in the reduced-order modelling of 
complex VLSI circuitry [2] [3]. 

Krylov sub-space methods apply to state-space models of 
linear systems and, for this reason, they are well-matched 
to the Finite Element Method, which gives rise to a model 
of this type [l] [4] [5]. On the contrary, Integral Equation 
Methods. which are the most effective in the analysis of pla- 
nar components, do not give rise to equations in the state- 
space form, so that Krylov sub-space methods can be ap- 
plied only through adaptive procedures [6], which partially 
reduce their efficiency. 

In this paper we give an outline of a new S-domain 
integral method for the modelling of shielded multilay- 
ered passive MMIC components or subsystems. Differ- 
ently from standard integral methods, the new procedure di- 
rectly results into state-equations, thus permitting to exploit 

at best the advantages of the integral approach and of Krylov 
sub-space methods. Some preliminary conference papers 
were already published [9]-[ll], which presented a similar 
method, valid only in the case of components on low-loss 
substrates. The algorithm presented here has been modified, 
in order to consider also lossy substrates, and to reformulate 
the problem in terms of real state-variables, thus allowing 
the use of standard model-order reduction techniques [2]. A 
detailed description of the new method will be given in a 
forthcoming journal paper. 

II. ‘XJTLINE OF THE THEORY 

Let us consider a shielded passive component consisting 
of thin metal elements embedded in a layered medium, in- 
cluding both insulating and semiconducting layers (Fig. 1). 
For the sake of simplicity we assume that these elements are 
located outside the semiconducting layers, at a single “met- 
allization level”. Furthermore, as usual, we assume a “delta- 
gap voltage excitation” [7] [S]. The shadowed area R shown 
in Fig. 1 represents the metallization, including the gaps 
tl, t?, , t,v where. the exciting voltages ~1, ~2,. , UN are 
applied. The excitation gives rise to a surface current fdis- 
tributed in the metallization, and to a set of gap-currents 
il, iz, , in. The positive direction of the gap-voltages and 
currents is defined by the normals <I, n’s, ,GN. We have: 

II- 
El’ 

i, = 
s 

j. ii,dt, (1) 
t, 

Over the surface R thk tangential electric field must satisfy 
the boundary condition: 

N 
A(2, y) = - c V,6”n’, + zJ?z, y) V&Y t fl (2) 

n=l 
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where 6, denotes a delta-function supported by the segment 
t,, and Z is the surface impedance of the metal elemenis. 
On the other hand the electric field is related to the currents 
density by the integral 

E,(z, y) = -~~pz; Y, d, y’) J’(z’, y’)dz’dy’ (3) 

where 
k = c 2, qz, y) e;(z’, y’) (4) 

where vectors zz are the normalized electric mode-vectors of 
the modes of the rectangular waveguide of sides a, b and 2, 
is the modal-impedance seen from the metallization level, 
looking in the layered rectangular cavity. For each mode, 2, 
is calculated by considering the transverse equivalent circuit 
shown in Fig. 2, where each line-section corresponds to a 
layer and the terminal short circuits correspond to the con- 
ducting planes at z = 0 and t = hL. The propagation 
factor (RF) and the characteristic impedance (CT) depend 
on the layer and on the mode. Their expressions in terms 
of the Laplace variable s are given in Table I, where ~2 and 
~2 are the conductivity and the relative permittivity of the 
e-th layer, and k, is the cutoff wavenumber of the mode. 
On substitution of (3) into (2) we obtain an integral equa- 
tion, whose solution yields the current density generated by 
a given set of voltages. Then, substituting into (1) we find 
the relationship between the voltages and the currents, i.e, 
the admittance matrix of the component. 

The integral equation is solved by using the Method of 
the Moments. We approximate the current density in a finite 
dimensional functional space, using the expression 

K 
f= ~Ck&?k(Z,Y) (3 

k=l 

where {Gk} is a set of real basis functions defined on R 
and {ck} is a set of complex variables. Using the Gal&in’s 
method the integral equation is transformed into the matrix 
equation 

Zc=Tv (6) 

where v is the voltage vector, c is the vector of the variables 
ckr and Z t CKxK, T t RKxN are matrices with entries 
given by 

Zhk = c wi,twdt + ZKhk (7) 

Re s 

T hn = 
J 

G,, E, dt, (8) 
t, 

where tubi := J, ti& e/da and Khk := J, tih Gkdfl. On 
the other hand, from (1) and (5) we obtain 

i=TTc (9) 

To put (6) into the form of a state-equation we introduce 
the pole expansion of the modal impedance 1121. We have 
an infinity of complex pole-pairs (Fig. 3), corresponding 
to damped oscillating modes of the equivalent circuit of 
Fig. 2. Furthermore, we possibly have a finite number of 
real poles, corresponding to damped non-oscillating modes. 
With the low conductivities of the semiconductors normally 
used in MMICs, it is found that real poles are absent in TE- 
mode impedance, whereas they are still present in TM-mode 
impedance, in a number equal to the number of interfaces in- 
volving one or two semiconductor layers, i.e., a number of 
the order of unity. 

Assuming that an accurate modeling is only required in 
some given “band of interest” (0, w,,,), we can approxi- 
mate someway the contribution of all poles far from the COT- 
responding portion of the imaginay axis (see Fig. 3). Then, 
considering a circle C of radius <wmaz, sufficiently larger 
than wmaz. we can truncate the pole expansions by retain- 
ing the poles located inside C and approximating the con- 
tribution of all other poles by a power expansion around the 
origin, truncated to the first order. We have 
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where: -ol,, and (fl,,)* represent a real pole and its real state variables are represented by the elements of the vectors 
residue; -rip i jw,@ and (& i ja&)’ represent a corn- 
plex pole-pair and their residues; the indexes @ and v label 
the poles in the order of increasing distances from the ori- 
gin; Cc is a summation including only the poles located in 
C, S, is the (real, non-negative) residue of the pole at the ori- 
gin (not existing for TE modes); I?,, tc, are real quantities 
and R, + s& approximates the contribution from all poles 
outside C. All coefficients included in the expansion de- 
pend only on the box and the metallization level, and can be 
determined once for all, and used for considering different 
metallization patterns. An efficient code for their calculation 
is described in 191. 

The pole-set of the matrix Z consists of the complex and 
real poles (E C) of all the impedances included in the sum- 
mation (7). These poles are renamed by using a single-index 
notation, thus constructing the sequences {v, , ~2,. , TM,}, 
{w~,w~, ,wM,} and {gl,gz,. .gM”]. The same index- 
ing is used for the residues. 

It is important to note that, with increasing the mode or- 
der i, the complex poles of the impedance 2, move toward 
infinity and go outside the circle C. Then, the number M’ 
of complex poles is finite (and reasonably small). whatever 
large is the number of terms included in the summation (7). 
The same statement does not hold true for real poles, be- 
cause they move toward $nite asymptotic values. If these 
values are placed inside of the circle C (which is likely to 
happen in the case of high resistivity semiconductor lay- 
ers) the number M” increases with increasing the number 
of terms included in the summation, and it can be very large. 
Equation (6) can be put into the form 

[RiZK+sL]c+Sd+Bb+A’a’+A”a” = TV (11) 

where: R, K, L, S E RKx K are symmetric matrices of evi- 
dent definition; matrices A’, A” E [RKxM’ are defined as 

A;, = v’%o~~cu~, A;, = ~%~~a;,, (m H j, fi) 

matrix B e WKxM” is defined as 

and the vectors a’, a” E CM’, b E CM”, d t CK satisfy 

(D’+&)a’+Da”-A”c=O (12) 
(D’ + sI~,)a” - Da’ + A”‘c = 0 (13) 

(D” + sI,w)b - BTc = 0 (14) 
sSd-Sc=O (13 

where D := diag(wl, , we,), D’ := diag(rt, , V-AC,), 
D” := diag(gl, ,g~“) and I, denotes the identity ma- 
trix of order n. All matrices are independent of s. 

For the sake of simplicity let us suppose that also Z is 
independent of s and assome that it is purely resistive (e.g., 
Z can be chosen as the solface resistance of the metalliza- 
tion at the frequency wmDz j2). With this assumption, eqoa- 
tions (1 I)-(15), explicitly exhibit the dependence on the pa- 
rameter s, in the typical form of state-equations, where the 

a’, a”, b,c, d. Introducing 

0 -A” D 

M:= 0 0 0 43 0 
-A’ -B -S -ii -A” 

0 0 -A”’ -,,’ 

z:= [ 

0 
0 
0 
T 
0 

the mathematical model of the component is pot into the 
standard state-space form 

(M+SN)X = *” (16) 
i zz Fx (17) 

The order of the model, i.e., the number of state variables, 
is M = 2K + 2M’ + M”. It can be large, especially due 
to the possible large values of M” and K. Using a Krylov 
sub-space algorithm the original model is replaced by the 
reduced-order model 

(&f+sB)x = 2” (18) 

i z Q’x (19) 

and the admittance matrix is obtained in the form of tbe pole 
expansion 

where g (<< ACr) is the order of the reduced-order model 
and X,, ym are the eigenvalues and the eigenvectors ob- 
tained from the solution of the generalized eigenvalue prob- 
lem (&I + XN)y = 0. 

III. EXAMPLE 
Fig. 4 and Fig. 5 show two examples of application of 

the described algorithm. The results are reported in the 
form of scattering parameters, that are determined straight- 
forwardly from the pole expansion of the admittance matrix. 
In both cases the basis functions were rectangular roof-tops. 
In the figures the results of our method are compared with 
the results obtained by a commercial code (EMSight”), 
which determines the scattering parameters, frequency by 
frequency, using the integral equation method in the spectral 
domain. The repotted omputing times refer to a standard PC 
with a 1300 MHz AMD Athlon processor. 

In the case of the directional coupler of Fig. 4 we used 
K = 516 basis functions, fna, = GO GHz and < = 2.5. We 



Fig. 4. Branch-line drectional coupler on a Si substrate (dimensions in 
p,). 2 = O.O5Cl, tl = 11.76, 01 = l/30 Slm. Sol,d line: this 
method; dots: EMSight res”Its 

found only one complex pole-pair inside the circle C (M’ = 
l), whereas the number of real poles was M” = 3600. The 
final order of the system was M = 42. The computing time 
was about 40 s, whereas EMSight required about 70 s to 
calculate the 31 frequency samples that ax reported in the 
figure. Taking into account the fact that our algorithm yields 
the whole frequency response from 0 to fmaz, the time sav- 
ing can be considered very significant. 

In the case of the coupled-line band-pass filter of Fig. 5 
we used K = 241 basis functions, f,,,,. = 70 GHz and 
C = 2.5. The number of complex poles was M’ = 10 and 
the number of real ones was M” = 1500. The final or- 
der of the system was M = 68. The computing time was 
about 10 s, which, in this case, was about one order of mag- 
nitude shorter than the time required by EMSight TM. The 
same structure was modelled with the procedure described 
in [ 1 I]: the new procedure gave rise to a time saving of about 
50% with respect to the old one. 

It is finally worthy noting that the above computing times 
include the evaluation of the coefficients of the pole expan- 
sions (lo), which affects the total CPU time by about 30%. 
When performing repeated analysis of circuits on the same 
stratification and included in the same shielding box, e.g., 
for optimization procedures, the evaluation of these coeffi- 
cients must be performed only once, thus further increasing 
the efficiency of the proposed method. 
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